Aeromax Astronaut Boots

£9.9
FREE Shipping

Aeromax Astronaut Boots

Aeromax Astronaut Boots

RRP: £99
Price: £9.9
£9.9 FREE Shipping

In stock

We accept the following payment methods

Description

As can be expected, the boots that he and fellow astronaut Edwin ‘Buzz’ Aldrin wore that day had to meet the most stringent safety and performance specifications. These consisted of two main parts – an inner ‘pressure boot’ with a flexible sole which was worn by the crew during their time in space, and a galosh that was strapped on over the inner boot prior to stepping onto the Moon.

The major complaint raised by the astronauts during their EVAs was the amount of dust which found its way between the inner and outer boots. NASA uses a suit called an ‘Extravehicular Mobility Unit’ (EMU) while Russia’s cosmonauts wear an ‘Orlan’ suit (Russian for ‘eagle’). Both of these suits and their corresponding boots are functionally very similar – they are designed to allow a crew member to perform operations in the vacuum of space while in the immediate vicinity of a spacecraft, although neither is designed for use on the surface of a body like the Moon or Mars. The current Chinese spacesuit was based on the Russian Orlan-M design and was worn by astronaut Zhai Zhigang during China's first-ever spacewalk on September 27th 2008. The join design at the sides of the boots are varied. The Derby boot is a curved design, while the Astronaut is more angular.The heel panel on the Derby boot is decoratively stitched while the Astronaut style has an additional panel which is top-stitched. A new design for boots was needed for the first ‘extra-vehicular activity’ (EVA) ‘spacewalk’. Because of the astronaut being in free space, NASA had to produce a thermal cover for the existing Gemini footwear, to take account of the extreme environment the equipment would now be expected to cope with. Due to Health and Hygiene reasons we are unable to accept underwear garments unless they are faulty. Because there are so many unknown factors about the exploration of Mars, it is difficult to accurately plan the exact nature of the work clothes the astronauts will need to wear. However, what is obvious is that footwear will need to be pressurised, as the Martian atmosphere is so thin. Because NASA did not really know what the surface of the Moon was like, there was a fear that the Lunar Module or the astronauts themselves would sink into the dust. However, as with the Mercury and Gemini programmes, the organisation had some smart people working for it, and their judgment of the Moon’s surface was right, so there was a reasonably firm surface on which to stand.

As a progressive scientific organisation, NASA is leading the way among the ‘big three’ of space-going nations, and has great plans for future exploration of space. If these goals are achieved, footwear will definitely play a key role in such off-world voyages of discovery. With the experience the Administration has gained over the past 50 years, and the technical leadership of people like Joe Kosmo, the design of astronauts’ boots will undoubtedly continue to progress as new materials become available. Publishing Data With their matching boots and spacesuits, astronauts will be riding in style on Boeing's future flights to the space station. But more importantly, the new apparel will help make spaceflight more comfortable for astronauts than ever before. Additionally, if a semi-permeable membrane is used between an insulating liquid layer and the inner parts of the footwear, unwanted moisture could move from the inner parts of the footwear to the insulating liquid layer. The positive aspect of incorporating a semi-permeable membrane would be the reclamation of any water normally lost as a result of sweating. The negative outlook of using such a method is that all the other substances contained within sweat would be left in the inner parts of the footwear, requiring the boots to be cleaned out on a regular basis. Most live testing of the spacesuits and boots took place in environmental chambers, although a limited amount of testing ‘in the field’ did take place in the USA’s closest representation of the lunar surface – Arizona. Prototypes for the Apollo boots were first designed in 1962 and, within six years, a definitive design had been forged. During the Apollo programme, this footwear gradually evolved, with the last changes made in 1972.Much of what is necessary for boots to be suitable for exploration on Mars is therefore similar to that required for the missions to the Moon. The sole of the boots will need to be quite stiff to accommodate any uneven ground that the astronauts will need to traverse. Having said that, there are additional types of terrain on Mars that were not found during the Apollo missions. For instance, while it is unlikely that the astronauts would be expected to climb, much of the Martian surface is mountainous, so specific equipment – such as crampons – could feasibly be required, and footwear for exploration may have to accommodate such accessories.

The outer boot consisted of 12 layers of biaxially-oriented polyethylene terephthalate (boPET) – a polyester film (commonly called ‘Mylar’) made from stretched polyethylene terephthalate (PET). This was selected for its high tensile strength, chemical and dimensional stability, reflectivity, gas barrier and electrical insulation properties. This footwear also included a nonwoven PET product and a fibreglass/ polytetrafluoroethylene (PTFE) inner liner material. We will not accept the return of any item(s) that has been modified, this includes but is not limited to the application of shoe care products, footwear that has been re-soled, footwear that has been stretched, belts that have been resized. After lunar surface exploration had been performed by six pairs of American astronauts, the programme ended in 1972. All manned NASA space missions after 1981 flew in the reusable Shuttle, often to launch or recover satellites or work on the International Space Station (ISS). Outer boots worn during spacewalks did not need to be as flexible as those used on the Moon’s surface or when inside the craft. A rigid sole was utilised and a heel clip fitted, which could locate and secure into foot restraints on the exterior of the ISS and on the robotic arm.Adjusting the boots is likely to call for a ratchet and line closure system involving metal wire, as this does not require knots to be tied. Such a system would allow the boots to be loosened and tightened while the wearer is still in a pressurised suit, which will likely be quite restrictive in nature. Using metal wire as opposed to more traditional materials will cut down on ultraviolet (UV) degradation and improve resistance to wear.



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop